ANALYSIS OF MUSCLE OXYGENATION PARAMETERS DURING CYCLING:

INFLUENCE OF SITE AND COMPARISON OF DIFFERENT COMMERCIAL NEAR-INFRARED SYSTEMS

Norman Riedel, Eduard Lukanowski, Arved Reimann, Matthias Kohl-Bareis

University of Applied Sciences Koblenz, RheinAhrCampus, Joseph-Rovan-Allee 2, 53424 Remagen, Germany

BACKGROUND

- Near-Infrared Spectroscopy (NIRS) is widely used for the analysis of muscle oxygenation in microcirculation, parameters:haemoglobin concentration tHb, oxygen saturation SO₂ (ref. 1- 6)
- Remaining problems are
- comparison of different monitors which differ in technical details (wavelength, detectors, algorithm)
- influence of site / muscle group
- there is no gold standard to compare with

AIMS

- Comparison of two commercial monitors during incremental cycling
- Analysis of site dependence
- Hypothesis:
- haemoglobin parameters agree for two commercial monitors
- changes in deoxygenation are largest in the centre of the muscle

METHODS

- Two commercial NIRS tissue oxygenation monitors
- Hamamatsu NIRO-200 NX:
- Moor Instruments moorVMS-NIRS
- two channels each
- algorithm: spatially-resolved spectroscopy
- oxygen saturation SO₂ is main parameter
- as haemoglobin and oxygenation depends on the site and the sensors have a size of about 5 cm, muscles of left and right legs were compared

Protocol

- n= 11 (healthy, male, age = (22.3 ± 2.7) y, mass = (71.0 ± 8.1) kg, height = (180 ± 7) cm, adipose tissue thickness = (3.1 ± 2.2) mm)
- site: vastus lateralis of left & right leg, central and distal
- cycling, incremental power steps ($\Delta P = 30$ W, t = 2 min each until P_{max} , cadence: 80 cpm)
- descriptive statistical analysis

moor instruments moor instruments particle system moor instruments moor instruments moor instruments particle system moor instruments moor instruments

RESULTS

Oxygen Saturation SO₂: mean ± SD

- decrease in SO₂ with exercise power
 deoxygenation stronger in centre of muscle
- agreement for the two commercial sensors
- agreement for the two commercial sensors

Normalised total haemoglobin concentration tHb: mean ± SD

- increase in haemoglobin concentration with power
- larger changes in centre of muscle
- within error agreement for two commercial monitors

RESULTS

Change in Oxygen Saturation ΔSO_2 with respect to baseline: mean \pm SD

- NIRO-200NX and moorVMS-NIRS monitors agree within errors

Correlation of Changes in Oxygen Saturation ΔSO_2 for Hamamatsu NIRO200NX and moorVMS-NIRS

High correlation between commercial monitors

for SO_2 : $R^2 = 0.99$ for ΔSO_2 : $R^2 = 0.97$ for tHb: $R^2 = 0.87$

CONCLUSION

- within errors, haemoglobin parameters agree for Hamamatsu NIRO-200 NX and Moor Instruments moorVMS-NIRS
- high correlation between monitors for SO_2 and ΔSO_2
- correlation for tHb is lower
- Differences between site and / or left right leg are larger than between monitors
- Oxygenation changes larger for centre of muscle compared to distal site
- Differences might be due to
- positioning / site
- pressure and fixation of sensor
- differences in anatomy / adipose tissue thickness
- physiology

REFERENCES

- 1. Wolf M, Ferrari M, Quaresima V. J Biomed Opt 12, 062104, 2007
- 2. Bhambhani Y. Can. J. Appl. Physiol. 29, 504-523, 2004
- 20043. Matcher SJ, Kirkpatrick P, Nahid K, Cope M, Delpy
- DT. SPIE 1995; 2389: 486–95.

 4. Suzuki S, Takasaki S, Ozaki T, Kobayashi Y. SPIE
- 1999; 3597: 582–92.
 5. Geraskin D, Platen P, Franke J, Andre C, Bloch W, Kohl-Bareis M SPIE 2005; 5859: 58590L.
 6. Geraskin D, Boeth H, Kohl-Bareis M. SPIE 2007;
- Acknowledgment:

6629: 66281H.

The work was supported by Moor Instruments Ltd.